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Abstract Achieving the optimal dimensional quality for automotive body parts
today is a time and cost-intensive process still often based on trial-and-error
approaches. There are two ways to improve the accuracy in the production process:
Early modification of the tools in the press shop is one way to significantly manip-
ulate the dimensional quality of parts, although resulting in high costs. The other—
much more time and cost-effective—way is trying to change the geometry in the
body shop, although providing a lesser adjustment range. Definition of a reasonable
parameter adjustment in a single joining stage needs expert knowledge because the
adjustment of a single fixture component can have a complex impact on the final
assembly. In this publication, a new approach based on finite element simulation and
statistical methods is presented being able to characterize the interactions between
clamp settings and assembly geometry and to identify the main impact factors on
the dimensional accuracy of assembled body parts. The surrogate model is based on
smart data, gathered from FEM simulations.

Keywords Body manufacturing process - Body shop + Body-in-white - Matching
process + Assembly simulation - Smart data + Coupled process analysis + CPA -
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Introduction

Considering the customers’ increasing expectations of vehicle quality in terms of
design, appearance, and functionality, the manufacture of dimensionally accurate
and robust car bodies represents a fundamental aspect of automotive production.
Typically, even slight variations in gaps between body assemblies, such as side panel
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frames and doors, can have a significant impact on the visual appearance of a vehicle.
Throughout the body manufacturing process, many process influences affect the
quality of the body assemblies (e.g. geometry variations of the individual parts)
potentially resulting, in the geometry lie far outside the required tolerances [1]. This
means that the ramp-up phase until the start of production (SOP) is characterized by
time-consuming and cost-intensive adjustment loops. The shortening of these trial
and error processes is an essential criterion for achieving competitive advantages in
automotive manufacturing.

To achieve the highest possible degree of process capability, the numerical vali-
dation of individual process steps in car body production based on the finite element
method (FEM) is part of the industrial standard [2]. The springback and gravity simu-
lations performed are the prerequisite that enables a valid analysis of the dimensional
quality of individual parts and assemblies at an early stage of development. In the
automotive production process, the application of simulation methods based on the
finite elements has been state of the art since decades [3]. The simulation results
can then be used during the planning phase as well as at the start of the series
production process in order to save time-consuming and cost-intensive quality loops
[2]. Frequently used simulation engines are the commercial packages AutoForm,
PAM-STAMP, ANSYS, or LS-DYNA.

Due to the large number of adjustment options along the automotive process
chain, the identification of complex interactions based on trial and error approaches
is not very target-oriented, so simulation is increasingly supplemented by parameter
studies. Especially in the field of sheet metal forming and assembly simulation,
Machine Learning (ML) methods are used to predict and optimize the effects of
undesired process variations on the quality of parts and assemblies [4].

Through the integration of statistical methods into the virtual production process,
it is possible to perform systematic variant calculations in the form of parameter
studies. In automotive industry, studies are frequently employed to support, among
others, the following tasks:

springback compensation in sheet metal forming [5-7].

robustness evaluation and optimization of the manufacturability of drawn parts
during deep drawing to identify critical areas [8].

optimization of the dimensional accuracy of assemblies [9].

3D representation of statistical measures on the surface of discretized scan or FE
meshes by data reduction methods [10-12].

identification of typical hemming defects [13, 14].

sensitivity analysis to identify quality-relevant process parameters along the
automotive process chain [11, 15].

An important approach for systematic use of parameter studies in the automotive
environment is the method called Coupled Process Analysis (CPA) presented in
[15]. The main advantage is the shape-based (elementwise) visualization of statistical
quantities on the surface of FE and scan meshes in sheet metal forming and assembly
processes. The procedure is shown in Fig. 1.
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Fig. 1 CPA algorithm [15]

The method can be divided into five steps: In the first step, simulation variants
are calculated by varying defined input parameters (e.g., variations of clamp and pin
positions in fixture). The second step is to standardize the inconsistent simulation
data. In the next step, the mesh-based simulation results (deviations from CAD target)
are transformed into a low-dimensional feature space. The idea is a feature map of
large data sets into a new coordinate system so that the input data can be described
using a small number of geometric error modes. In the fourth step, surrogate modeling
is performed in the low-dimensional feature space. Here, the input parameters are
functionally linked with the error modes by linear and quadratic regression models.
The models can also be used to estimate the sensitivities of the parameters in the
feature space by variance-based methods. Through the possibility of inverting the
feature mapping, a functional connection can be made between the surrogate models
and the real space domain. This connection enables the shape-based visualization of
sensitivities on the part geometry (step 5) and the optimization of the input parameters
in the sixth step.

From these observations, it can be concluded that it is highly relevant to study
how FE simulations and machine learning methods can be integrated more tightly,
in particular, to find process-relevant parameters, which influence the dimensional
quality of parts and assemblies. Therefore, within the present publication, a concept
is presented that allows the identification of relevant process parameters affecting the
dimensional accuracy of assemblies based on FEM simulations. The CPA algorithm
presented in [15] is used for the statistical analysis of the correlations.
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Overview of the Developed Concept

The developed concept is presented in the following with the corresponding workflow
shown in Fig. 2.

1. Forming simulation with AutoForm

The scatter of springback of the stamped part is strongly influenced by the vari-
ation of the sheet thickness, by the process forces of the press (e.g. blankholder
force), the blank position in the die, the friction and material properties (yield
stress and anisotropy of the material) [1]. Therefore, in a first step, the geometric
variations of body parts are obtained by simulating the stamping process with
varying parameters in AutoForm. The individual parts (subject to springback) are
used as input data for the subsequent assembly simulations done with ANSYS.
The idea is to take the individual part variation into account in the assembly
simulation, the variation of the individual part geometry realistic, simulated
deformations.

2. Assembly simulation with ANSYS

The second step is the assembly simulation with ANSYS. With the chosen simu-
lation model, it is possible to account for the sheet thickness distribution, a
provided stress state and the (deviating) geometry of each individual part. In
addition, it is possible to map the current configuration of the fixture. This
includes the kinematics of the fixture units, clamping and joining sequence
as well as the position of the clamps in the fixture. The assembly simulation
process can be divided into several steps: First, the individual parts are inserted
into the fixture, then the clamps are closed, the individual parts are joined
by connecting nodes, the clamps are released and finally the joined assembly

1. Forming Simulation by Autoform

4. User-friendly visualisation
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individual parts
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2. Assembly simulation by ANSYS 3. Statistical Analysis by CPA algorithm
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Fig. 2 Developed concept to identify process relevant parameter
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(positioned according to RPS) is measured to determine the deviation between
measurement and reference geometry (CAD).

The primary objective of the study is to identify changes in the dimensional
quality of the assembly as a consequence of a defined adjusting of the clamps of
the fixture. In order to systematically generate input data for the CPA algorithm,
adesign of experiments (DOE) planis created with various settings of the clamps
of the fixture. In the context of the investigation, the simulation model has been
extended so that various settings of the clamps of the fixture can be implemented
and corresponding simulations are calculated automatically.

3. Statistical analysis by CPA algorithm

Based on the ANSYS simulation data, CPA is used to identify how the clamps
of the fixture varied in step 2 and influence the dimensional accuracy of the
assembly. For this purpose, a surrogate model is built, which approximates the
relationship between clamps settings and part geometry.

4. User-friendly visualization

With the CPA algorithm, the calculated sensitivities of the clamps can be
visualized node-based on the FE mesh surface in the last step.

Sensitivity Analysis of a Wheelhouse Sub-Assembly

In the first case study, the presented concept is applied to a two-piece sub-assembly of
a wheelhouse. The aim is to identify the influence of six clamps of the fixture on the
dimensional quality of the sub-assembly. Figure 3 shows the varied input parameters
within the simulation model.

Based on the input parameters, ten samples are generated using a random-based
sampling strategy (Latin hypercube), and the final dimensional accuracy is calculated
for each test variant using the ANSYS simulation engine. The resulting FE meshes
are standardized as an input for the CPA algorithm, where they are linked to the input
parameters by statistical models. For analyzing the sensitivity effects of the clamp
parameters, a MATLAB-based graphical user interface (GUI) was designed, with
which the user is able to apply the CPA algorithm independently and menu-driven.
The mesh-based results of the CPA method for identifying cause—effect relationships
can be seen in Fig. 4.

The results show that the prognosis quality of the CPA model is very high. A total
prognosis of approx. 94% (coefficient of determination) can be achieved. The upper
bar chart in Fig. 4 on the left shows that the clamp parameter “BT1_SF1” has the
greatest influence on the dimensional accuracy with almost 50%, followed by the
clamp parameter “BT1_BT2_SF2” with 27%. Likewise, the local sensitivity on each
FE-node of the entire ANSYS mesh can be determined by the CPA model. The lower
bar chart in Fig. 4 shows the impact of the different clamp parameters on a single
point 1 (position is indicated on the right-hand side of Fig. 4). The point lies in an area
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Fig. 3 Varied input parameters within the simulation model
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Fig. 4 CPA results of the wheelhouse sub-assembly
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with a very high variation range of about 8§ mm (Fig. 4—right). A local prognosis
value of approx. 96% can be obtained here. Due to the high prediction quality of
the model, it can be stated that the CPA model works well for this multi-part body
assemblies.

Sensitivity Analysis of a Structural Side Panel

With the developed procedure, it is also possible to simulate the manufacturing
process of more complex assemblies; such as the structural side panel shown in
Fig. 5. The assembly, which is produced in four (sub)-assembly stages, consists of
nine individual parts. One simulation result with a modification of the clamping
settings in the last assembly stage is shown as an example. The so-called shim task
causes the b-pillar to rotate transverse to the driving direction (around the y-axis).
Figure 5 visualizes the clamp and pin positions in fixture (P,). The rotation of the
b-pillar by approx. 5 degrees is achieved by adjusting the P4, P10, P13, P24, P44, and
P45. In addition, the b-pillar is displaced by 0.1 mm in opposite driving direction.
Figure 5 includes the quantitative adjustments of the clamps and pins (P,).

Figure 6 shows the simulation result with rotated b-pillar. The maximum deviation
to the reference at the assembly amounts to 3.7 mm in the transition area to the roof
rail (M3 in Fig. 6). This simulation result—as one among many (n > 10)—is used

The displacement of several units causes a
& - rotation and displacement of the b-pillar
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Fig. 5 Clamp and pin positions in structural side panel fixture (P,) and the belonging adjustment
value
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Fig. 6 Simulation result; fotal deformation as a measure of deviation from the reference geometry

by the CPA algorithm to create a surrogate model for predicting the influence of a
shim task on dimensional accuracy of the assembly (Fig. 7).

Again, a high prognoses quality of approx. 91% is achieved. The clamp group 1,
located at the bottom of the b-pillar, has major influence on the dimensional accuracy.
Further validation with practical test series is pending.
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Fig. 7 CPA results of the structural side panel assembly
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Conclusion

The construction of dimensionally accurate car body assemblies is a huge challenge
in automotive industry. Complex multi-step joining procedures, involving diverse
process uncertainties, do not admit simple cause—effect relationships between clamp
parameter adjustments and resulting geometrical deviations in the joined assembly.
The present paper suggests a new approach based on simulation and statistics, which
is able to approximate these interactions to a large extend.

It is possible to map the manufacturing process, involving the stamping process,
the assembly and the measurement, completely virtually (AutoForm, ANSYS). The
resulting assembly geometries for varying process input parameters (stamping
parameters as well as clamp settings) are given as input to a prediction model based
on Coupled Process Analysis (CPA). Here, also measurement data can be provided.
Based on the input data, CPA is used to identify how the clamps of the fixture varied in
the step before influence the dimensional accuracy of the assembly. For this purpose,
a surrogate model is built, which approximates the relationship between clamps
settings and part geometry. The results show that the effect of the clamp settings can
be predicted with a high accuracy via statistical models even for complex assemblies.
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